Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Venom Res ; 11: 26-33, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34123362

RESUMO

Belonging to the Viperidae family, Bothrops moojeni are widely distributed in South America, tropical savanna ecoregion (Cerrado) of Argentina, Bolivia, Brazil, and Paraguay with medical importance in Brazil. Accidents caused by this species have a rapid local action with the development of tissue inflammation, causing erythema, pain, and increased clotting time, which can culminate in gangrene or tissue necrosis. Bothrops moojeni venom has a rich composition that remains underexplored, which is of utmost importance, both for elucidating the envenoming process and the vast library of new bioactive molecules kind of venom can offer. This review aims to analyze which components of the venom have already been characterized towards its structure and biological effect and highlight the pharmacological and biotechnological potential of this venom. Although snake venoms have been studied for their toxic effects for generations, innovative studies address their components as tools for discovering new therapeutic targets and new molecules with pharmacological and biotechnological potential.

2.
Mar Drugs ; 16(6)2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899267

RESUMO

Marine invertebrates, such as sponges, tunicates and cnidarians (zoantharians and scleractinian corals), form functional assemblages, known as holobionts, with numerous microbes. This type of species-specific symbiotic association can be a repository of myriad valuable low molecular weight organic compounds, bioactive peptides and enzymes. The zoantharian Protopalythoa variabilis (Cnidaria: Anthozoa) is one such example of a marine holobiont that inhabits the coastal reefs of the tropical Atlantic coast and is an interesting source of secondary metabolites and biologically active polypeptides. In the present study, we analyzed the entire holo-transcriptome of P. variabilis, looking for enzyme precursors expressed in the zoantharian-microbiota assemblage that are potentially useful as industrial biocatalysts and biopharmaceuticals. In addition to hundreds of predicted enzymes that fit into the classes of hydrolases, oxidoreductases and transferases that were found, novel enzyme precursors with multiple activities in single structures and enzymes with incomplete Enzyme Commission numbers were revealed. Our results indicated the predictive expression of thirteen multifunctional enzymes and 694 enzyme sequences with partially characterized activities, distributed in 23 sub-subclasses. These predicted enzyme structures and activities can prospectively be harnessed for applications in diverse areas of industrial and pharmaceutical biotechnology.


Assuntos
Antozoários/enzimologia , Organismos Aquáticos/enzimologia , Produtos Biológicos , Enzimas/genética , Animais , Antozoários/genética , Organismos Aquáticos/genética , Biocatálise , Biotecnologia/métodos , Enzimas/metabolismo , Química Verde/métodos , Indústrias/métodos , Transcriptoma
3.
Cell Mol Life Sci ; 74(4): 647-661, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27554773

RESUMO

Toxins have been shown to have many biological functions and to constitute a rich source of drugs and biotechnological tools. We focus on toxins that not only have a specific activity, but also contain residues responsible for transmembrane penetration, which can be considered bioportides-a class of cell-penetrating peptides that are also intrinsically bioactive. Bioportides are potential tools in pharmacology and biotechnology as they help deliver substances and nanoparticles to intracellular targets. Bioportides characterized so far are peptides derived from human proteins, such as cytochrome c (CYCS), calcitonin receptor (camptide), and endothelial nitric oxide synthase (nosangiotide). However, toxins are usually disregarded as potential bioportides. In this review, we discuss the inclusion of some toxins and molecules derived thereof as a new class of bioportides based on structure activity relationship, minimization, and biological activity studies. The comparative analysis of the amino acid residue composition of toxin-derived bioportides and their short molecular variants is an innovative analytical strategy which allows us to understand natural toxin multifunctionality in vivo and plan novel pharmacological and biotechnological products. Furthermore, we discuss how many bioportide toxins have a rigid structure with amphiphilic properties important for both cell penetration and bioactivity.


Assuntos
Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Sequência de Aminoácidos , Animais , Venenos de Crotalídeos/química , Venenos de Crotalídeos/metabolismo , Crotalus/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Modelos Moleculares , Venenos de Escorpião/química , Venenos de Escorpião/metabolismo , Escorpiões/metabolismo , Venenos de Víboras/química , Venenos de Víboras/metabolismo , Viperidae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...